Natural Transformation Objects as Equalisers

A.P. Neate

We will provide a definition of the natural transformation object in an enriched category courtesy of [1] and prove that the natural transformation object is given by an equaliser.

Definition 0.1. Let V be a symmetric monoidal category with symmetry τ and let $F, G: C \rightarrow D$ be V-enriched functors. A natural transformation object $\mathrm{NT}_{V}(F, G)$ is an object of V such that for each $a \in \mathrm{ob}(C)$ there is a map $N_{a}: \mathrm{NT}_{V}(F, G) \rightarrow D(F(a), G(a))$ such that the following diagram commutes.

Additionally we require $N T_{V}(F, G)$ is unique up to isomorphism by the universal property which states that for any object $M \in V$ and collection of morphisms $\left\{M_{a}: M \rightarrow D(F(a), G(a))\right\}_{a \in C}$ there exists a unique map $\phi: M \rightarrow N T(F, G)$ such that $\left(\phi \otimes \operatorname{id}_{C(a, b)}\right)$ factors through the above diagram.

Theorem 0.2. If V a closed and complete symmetric monoidal category then for two V-enriched functors $F, G: C \rightarrow D$ the natural transformation object is given by an equaliser of the form below.

$$
\mathrm{NT}_{V}(F, G) \xrightarrow{\Pi_{\mathrm{c}} N_{c}} \prod_{c} D(F(c), G(c)) \xrightarrow[\beta]{\stackrel{\alpha}{\longrightarrow}} \prod_{a, b}[C(a, b), D(F(a), G(b))]
$$

To prove this theorem we need the help of the following intermediary lemma.

Lemma 0.3. If V is a closed monoidal category then there are maps λ_{1} and λ_{2} which can be found such that the commuting of the diagram in Definition
0.1 is equivalent to the commuting of the following diagram.

Proof. Since V is a closed category then for each object $C \in V$ we have an adjunction $-\otimes C \dashv[C,-]$ and hence a unit natural transformation η^{C} : id \rightarrow $[C,-\otimes C]$. For objects $N T, D \in V$ and a morphism $P: N T \otimes C \rightarrow D$ then we can take the composition with $\eta_{N T}^{C}$ to get a map

$$
\hat{P}: N T \xrightarrow{\eta_{N T}^{C}}[C, N T \otimes C] \xrightarrow{\left[\mathrm{id}_{C}, P\right]}[C, D]
$$

If we have objects $D_{N}, D_{K} \in V$ and morphisms $N: N T \rightarrow D_{N}, F: C \rightarrow$ D_{K}, and $\circ(\sigma): D_{N} \otimes D_{K} \rightarrow D$ and write P as a composite of the form

$$
N T \otimes C \xrightarrow{N \otimes K} D_{N} \otimes D_{K} \xrightarrow{\circ(\sigma)} D
$$

then we can see that \hat{P} is given by the composite

$$
N T \xrightarrow{\eta_{N T}^{C}}[C, N T \otimes C] \xrightarrow{\left[\mathrm{id}_{C}, N \otimes K\right]}\left[C, D_{N} \otimes D_{K}\right] \xrightarrow{\left[\mathrm{id}_{C}, \circ(\sigma)\right]}[C, D]
$$

We can write $N \otimes K$ as two maps $\left(\operatorname{id}_{D_{N}} \otimes K\right) \circ\left(N \otimes \mathrm{id}_{C}\right)$ and re-write \hat{P} as a map

$$
\begin{aligned}
& N T \xrightarrow{\eta_{N T}^{C}}[C, N T \otimes C] \xrightarrow{\left[i d_{C}, N \otimes \mathrm{id}_{C}\right]}\left[C, D_{N} \otimes C\right] \xrightarrow{\left[\mathrm{id}_{C}, \mathrm{id}_{D_{N}} \otimes K\right]}\left[C, D_{N} \otimes D_{K}\right] \\
& \xrightarrow{\left[\mathrm{id}_{C}, \circ(\sigma)\right]}[C, D] .
\end{aligned}
$$

Now naturality means η^{C} commutes with morphisms. In particular

$$
\left[\mathrm{id}_{C}, N \otimes \mathrm{id}_{C}\right] \circ \eta_{N T}^{C}=\eta_{D_{N}}^{C} \circ N
$$

We re-write \hat{P} with the morphisms having commuted to get

$$
\hat{P}: N T \xrightarrow{N} D_{N} \xrightarrow{\eta_{D_{N}}}\left[C, D_{N} \otimes C\right] \xrightarrow{\left[\mathrm{id}_{C}, \mathrm{id}_{D_{N}} \otimes K\right]}\left[C, D_{N} \otimes D_{K}\right] \xrightarrow{\left[\mathrm{id}_{C}, \circ(\sigma)\right]}[C, D] .
$$

We will use λ denote the composition of the maps from D_{N} to $[C, D]$ so we can write \hat{P} as

$$
\hat{P}: N T \xrightarrow{N} D_{N} \xrightarrow{\lambda}[C, D] .
$$

Now we refer to the diagram of Definition 0.1. Take the following substitutions for our variable names:

$$
N T=N T_{V}(F, G), C=C(a, b), D=D(F(a), G(b))
$$

We will take two different choices of substitutions for the remaining variables. First we take

$$
\begin{aligned}
N & =N_{a}, \quad D_{N}=D_{N_{a}}=D(F(a), G(a)) \\
K & =G, \quad D_{K}=D_{G}=D(G(a), G(b)) \\
\sigma & =\tau
\end{aligned}
$$

This choice of variables gives us a map $\hat{P}_{1}: N T \xrightarrow{\eta_{N T}^{C}}[C, N T \otimes C] \xrightarrow{\left[\mathrm{id}_{C}, P_{1}\right]}$ $[C, D]$ where P_{1} is the morphism P given above. The other substitutions we will make are

$$
\begin{aligned}
N & =N_{b}, \quad D_{N}=D_{N_{b}}=D(F(b), G(b)) \\
K & =F, \quad D_{K}=D_{F}=D(F(a), F(b)) \\
\sigma & =\text { id }
\end{aligned}
$$

Again this gives us a maps P_{2} and $\hat{P}_{2}: N T \xrightarrow{\eta_{N T}^{C}}[C, N T \otimes C] \xrightarrow{\left[\mathrm{id}_{C}, P_{2}\right]}[C, D]$. Definition 0.1 tells us that P_{1} and P_{2} are equal and so $\hat{P}_{1}=P_{1} \circ \eta_{N T(F, G)}^{C(a, b)}=$ $P_{2} \circ \eta_{N T(F, G)}^{C(a, b)}=\hat{P}_{2}$. By the working above each of \hat{P}_{1} and \hat{P}_{2} are given by compositions $N_{a} \circ \lambda_{1}$ and $N_{b} \circ \lambda_{2}$ respectively which exactly gives us the commuting diagram required.

We can now prove Theorem 0.2
Proof. First we need to find maps α and β and e such that

$$
\left(\prod_{c} N_{c}\right) \circ \alpha=\left(\prod_{c} N_{c}\right) \circ \beta
$$

We take α and β to be the products over objects in C of the maps λ_{1} and λ_{2} of Lemma 0.3 respectively. Lemma 0.3 gives us that $\prod_{c} N_{c}$ equalises α and β as required.

Finally we need to show that $N T(F, G)$ satisfies the universal property of this equaliser. If there exists an object M and for each $c \in C$ a morphism $M_{c}: M \rightarrow D(F(c), G(c))$ then Definition 0.1 gives us the existence of a unique map $\phi: M \rightarrow N T(F, G)$ such that $\left(\phi \otimes \mathrm{id}_{C(a, b)}\right)$ factors through the diagram of Definition 0.1. In particular this means that ϕ is a unique map such that $M_{a}=N_{a} \circ \phi$ for all $a \in C$ and so ϕ is the unique map that factors through the diagram of Lemma 0.3 and by taking the product $\prod_{c} \phi$ factors uniquely through the equaliser and so satisfies the universal property as required.

References

[1] Simon Willerton. "Enirched categories through examples". unpublished manuscript. Apr. 2022.

