Natural Transformation Objects as Equalisers

A.P. Neate

We will provide a definition of the natural transformation object in an enriched category courtesy of [1] and prove that the natural transformation object is given by an equaliser.

Definition 0.1. Let V be a symmetric monoidal category with symmetry τ and let $F, G: C \to D$ be V-enriched functors. A **natural transformation object** $\operatorname{NT}_V(F,G)$ is an object of V such that for each $a \in \operatorname{ob}(C)$ there is a map $N_a: \operatorname{NT}_V(F,G) \to D(F(a),G(a))$ such that the following diagram commutes.

$$\begin{array}{c|c} \operatorname{NT}_{V}(F,G) \otimes C(a,b) & \xrightarrow{(G \otimes N_{a}) \circ \tau} & D(G(a),G(b)) \otimes D(F(a),G(a)) \\ & & & & \downarrow \circ \\ & & & & \downarrow \circ \\ D(F(b),G(b)) \otimes D(F(a),F(b)) & \xrightarrow{\circ} & D(F(a),G(b)) \end{array}$$

Additionally we require $NT_V(F,G)$ is unique up to isomorphism by the universal property which states that for any object $M \in V$ and collection of morphisms $\{M_a \colon M \to D(F(a), G(a))\}_{a \in C}$ there exists a unique map $\phi \colon M \to NT(F,G)$ such that $(\phi \otimes id_{C(a,b)})$ factors through the above diagram.

Theorem 0.2. If V a closed and complete symmetric monoidal category then for two V-enriched functors $F, G: C \to D$ the natural transformation object is given by an equaliser of the form below.

$$\mathrm{NT}_{V}(F,G) \xrightarrow{\prod_{c} N_{c}} \prod_{c} D(F(c),G(c)) \xrightarrow{\alpha}_{\beta} \prod_{a,b} [C(a,b),D(F(a),G(b))]$$

To prove this theorem we need the help of the following intermediary lemma.

Lemma 0.3. If V is a closed monoidal category then there are maps λ_1 and λ_2 which can be found such that the commuting of the diagram in Definition

0.1 is equivalent to the commuting of the following diagram.

Proof. Since V is a closed category then for each object $C \in V$ we have an adjunction $-\otimes C \dashv [C, -]$ and hence a unit natural transformation $\eta^C : \mathrm{id} \to [C, -\otimes C]$. For objects $NT, D \in V$ and a morphism $P : NT \otimes C \to D$ then we can take the composition with η^C_{NT} to get a map

$$\hat{P} \colon NT \xrightarrow{\eta_{NT}^C} [C, NT \otimes C] \xrightarrow{[\mathrm{id}_C, P]} [C, D]$$

If we have objects $D_N, D_K \in V$ and morphisms $N: NT \to D_N, F: C \to D_K$, and $\circ(\sigma): D_N \otimes D_K \to D$ and write P as a composite of the form

$$NT \otimes C \xrightarrow{N \otimes K} D_N \otimes D_K \xrightarrow{\circ(\sigma)} D$$

then we can see that \hat{P} is given by the composite

$$NT \xrightarrow{\eta_{NT}^C} [C, NT \otimes C] \xrightarrow{[\mathrm{id}_C, N \otimes K]} [C, D_N \otimes D_K] \xrightarrow{[\mathrm{id}_C, \circ(\sigma)]} [C, D].$$

We can write $N \otimes K$ as two maps $(\mathrm{id}_{D_N} \otimes K) \circ (N \otimes \mathrm{id}_C)$ and re-write \hat{P} as a map

$$NT \xrightarrow{\eta_{NT}^C} [C, NT \otimes C] \xrightarrow{[id_C, N \otimes id_C]} [C, D_N \otimes C] \xrightarrow{[id_C, id_{D_N} \otimes K]} [C, D_N \otimes D_K]$$
$$\xrightarrow{[id_C, \circ(\sigma)]} [C, D].$$

Now naturality means η^C commutes with morphisms. In particular

$$[\mathrm{id}_C, N \otimes \mathrm{id}_C] \circ \eta_{NT}^C = \eta_{D_N}^C \circ N.$$

We re-write \hat{P} with the morphisms having commuted to get

$$\hat{P} \colon NT \xrightarrow{N} D_N \xrightarrow{\eta_{D_N}} [C, D_N \otimes C] \xrightarrow{[\mathrm{id}_C, \mathrm{id}_{D_N} \otimes K]} [C, D_N \otimes D_K] \xrightarrow{[\mathrm{id}_C, \circ(\sigma)]} [C, D]$$

We will use λ denote the composition of the maps from D_N to [C, D] so we can write \hat{P} as

$$\hat{P}\colon NT \xrightarrow{N} D_N \xrightarrow{\lambda} [C,D].$$

Now we refer to the diagram of Definition 0.1. Take the following substitutions for our variable names:

$$NT = NT_V(F,G), \ C = C(a,b), \ D = D(F(a),G(b))$$

We will take two different choices of substitutions for the remaining variables. First we take

$$\begin{split} N &= N_a, \quad D_N = D_{N_a} = D(F(a), G(a)), \\ K &= G, \quad D_K = D_G = D(G(a), G(b)), \\ \sigma &= \tau. \end{split}$$

This choice of variables gives us a map $\hat{P}_1 \colon NT \xrightarrow{\eta_{NT}^C} [C, NT \otimes C] \xrightarrow{[\operatorname{id}_C, P_1]} [C, D]$ where P_1 is the morphism P given above. The other substitutions we will make are

$$\begin{split} N &= N_b, \quad D_N = D_{N_b} = D(F(b), G(b)), \\ K &= F, \quad D_K = D_F = D(F(a), F(b)), \\ \sigma &= \mathrm{id}. \end{split}$$

Again this gives us a maps P_2 and $\hat{P}_2 \colon NT \xrightarrow{\eta_{NT}^C} [C, NT \otimes C] \xrightarrow{[\mathrm{id}_C, P_2]} [C, D].$ Definition 0.1 tells us that P_1 and P_2 are equal and so $\hat{P}_1 = P_1 \circ \eta_{NT(F,G)}^{C(a,b)} = P_2 \circ \eta_{NT(F,G)}^{C(a,b)} = \hat{P}_2$. By the working above each of \hat{P}_1 and \hat{P}_2 are given by compositions $N_a \circ \lambda_1$ and $N_b \circ \lambda_2$ respectively which exactly gives us the commuting diagram required.

We can now prove Theorem 0.2

Proof. First we need to find maps α and β and e such that

$$\left(\prod_{c} N_{c}\right) \circ \alpha = \left(\prod_{c} N_{c}\right) \circ \beta$$

We take α and β to be the products over objects in C of the maps λ_1 and λ_2 of Lemma 0.3 respectively. Lemma 0.3 gives us that $\prod_c N_c$ equalises α and β as required.

Finally we need to show that NT(F,G) satisfies the universal property of this equaliser. If there exists an object M and for each $c \in C$ a morphism $M_c \colon M \to D(F(c), G(c))$ then Definition 0.1 gives us the existence of a unique map $\phi \colon M \to NT(F,G)$ such that $(\phi \otimes \operatorname{id}_{C(a,b)})$ factors through the diagram of Definition 0.1. In particular this means that ϕ is a unique map such that $M_a = N_a \circ \phi$ for all $a \in C$ and so ϕ is the unique map that factors through the diagram of Lemma 0.3 and by taking the product $\prod_c \phi$ factors uniquely through the equaliser and so satisfies the universal property as required. \Box

References

[1] Simon Willerton. "Enirched categories through examples". unpublished manuscript. Apr. 2022.